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Topological indices are graph invariants used in computational chemistry to encode
molecules. A frequent problem when performing structure-activity studies is that topo-
logical indices are inter-correlated. We consider a simple topological index and show
asymptotic independence for a random tree model. This continues previous work on
the correlation among topological indices. These findings suggest that a size-depen-
dence in a certain class of distance-based topological indices can be eliminated.
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1. Introduction

An important class of molecular descriptors used by computational chem-
ists are topological indices. Topological indices are graph invariants that are
derived from the molecular graph, usually the hydrogen-depleted molecular
graph [1–4]. Such a graph represents atoms and bonds in a molecule, regard-
less of distances between atoms, bond and torsion angles, and other parame-
ters representing the threedimensional molecular geometry. Topological indices
are either a function of the molecular graph only (topostructural indices) or also
encode information on chemical properties of atoms (topochemical indices) [5].
For example, the most frequently used molecular descriptor, the Randić index [6]

∑

adjacent v,w

deg(v) deg(w)

is a topostructural index while Moreau–Broto-autocorrelation [7]

∑

adjacent v,w

pvpw,
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whereby pv, pw are quantitative chemical properties of atoms v, w, is a
topochemical index. The latter index is also used for pairs of atoms having dis-
tances (number of bonds between) d > 1.

Topological indices are used to characterize similarity of molecules and to
predict physical, chemical or biological activities or properties [8]. Since topo-
logical indices can readily be computed using very little computation time they
are especially suited to screen large virtual libraries, a common task in computer
aided drug design.

The methods to relate the structure of a molecule to a specific activity
or property are known as quantitative structure-activity relationship (QSAR) or
quantitative structure-property relationship (QSPR) [9]. A frequent problem is
that molecular descriptors are inter-correlated which makes QSAR/QSFR studies
difficult or even impossible and raises doubt concerning the meaning of a large
number of descriptors [10], In this paper we consider a simple topological index
and show asymptotic independence for non-cyclic structures.

2. Preliminaries

Let Dd = Dd(G) = {(v, w)|v < w ∧ d(v, w) = d} be the set of ordered pairs
of vertices that have distance d > 0 in graph G and for all v ∈ V let Xv be a
variable associated with v. Many topological indices have the form

Ad(X) =
∑

(v,x)∈Dd

XvXw,

whereby X = (X1, . . . , Xn) is the vector of vertex-properties.
In [11–13], we used random graph models to investigate correlations among

these indices. A random graph model is, in the most general case, a set of graphs
together with a probability distribution defined on it.

For any random graph model, we proved the following [13]: let, for all ver-
tices v, w, Yv, Yw be independent random variables that are independent of the
graphical structure, and let E(X) and E(Y ) be the common expectations of Xv

and Yv, respectively. For all distances d > 0 then holds

1. Ad(X), Ad(Y) are uncorrelated iff E(X) = 0 or E(Y ) = 0;

2. Ad(X), Ad(Y) are linearly dependent for E(X), E(Y ) → ±∞.

However, uncorrelated random variables may still be dependent, even func-
tionally dependent. Thus, the above result does not clarify if the mutual depen-
dence, as expressed e.g., by the mutual information [14], is reduced for E(X) = 0
and to what extent. In this paper, we use characteristic functions to show asymp-
totic independence.
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The characteristic function ϕX : R
k → C of a k-dimensional random vector

X is defined as

ϕX(X) = E(eix·X)

whereby · denotes the scalar product. Note that ϕX is always finite since
|ϕX(x)| � 1. Characteristic functions have the following important properties
[15,16]:

(1) ϕX is characteristic for X, i.e. ϕX = ϕY iff X ∼ Y ;

(2) ϕXn
→ ϕX ⇐⇒ Xn

L→ X;
(3) for independent random variables X, Y holds ϕX+Y = ϕX + ϕY (the con-

verse is not true however);

(4) random variables X, Y are independent iff for all x, yϕ(X, Y )(x,y) =
ϕX(x)ϕY (y).

3. The random tree model

Let (T , P ) be a probability space of trees whose number of vertices is dis-
tributed according to a random variable N , that is, for every tree T ∈ T holds
P (T has n vertices) = P(N = n). We require that N > 1.

Furthermore, let X1, . . . , XN be random variables such that

(1) X1, . . . , XN are independent and uniformly distributed on {−1, 1},
(2) X1, . . . , XN are independent of D1.

Since we are going to use property (3) of characteristic functions, we need
that

∑

(v,w)∈D1(T )

XvXw

is a sum of independent random variables for every fixed T ∈ T . While for any
graph G = (V , D1)(XvXw)(v,w)∈D1 are pairwise independent, these random vari-
ables are not independent for cyclic graphs: consider G = K3 and let be X1X2 =
X2X3 = 1. Then X1 = X2 = X3, hence X1X3 = 1. However, independence holds
for trees:

Lemma 1. For every tree T , (XvXw)(v,w)∈D1(T ) are independent.

Proof. Since T is a tree, let be w.l.o.g. 1 a leaf and (1, 2) ∈ D1. For all (v, w)D1,
let be xv,w ∈ {−1, 1}. Then
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P(X1X2 = 1 ∧ ∀(v, w) ∈ D1XvXw = xv,w)

= P(X1 = X2 = 1 ∧ ∀(v, w) ∈ D1XvXw = xv,w)

+P(X1 = X2 = −1 ∧ ∀(v, w) ∈ D1XvXw = xv,w)

since P(X1 = ±1) = 1/2 = P(X1X2 = 1), we get

= P(X1X2 = 1)(P (X2) = 1 ∧ ∀(v, w) ∈ D1XvXw = xv,w)

+P(X2 = −1 ∧ ∀(v, w) ∈ D1XvXw = xv,w))

= P(X1X2 = 1)P (∀(v, w) ∈ D1XvXw = xv,w)

= · · · =
∏

(v,w)∈D1

P(XvXw = xv,w).

For P(X1X2 = −1), the result follows accordingly. Thus, for all M ⊂ D1

follows

P




⋃

(v,w)∈M

{XvXw = xv,w}


 =
∏

(v,w)∈M

P(XvXw = xv,w)

since M = D1(F ) for a forest F .

As an unexpected consequence, we get:

Corollary 2. Let T1, T2 be trees on the same number of vertices. Then
∑

(v,w)∈D1(T1)

XvXw and
∑

(v,w)∈D1(T1)

XvXw

have the same distribution.

Proof. The distribution of the sum depends on the number of summands only.

4. Asymptotic independence

Lemma 3 is crucial to show asymptotic normality and independence in
the main theorem. Note that e−1/2x2

is the characteristic function of the normal
distribution.

Lemma 3. For all x ∈ R, limn→∞
(

cos x√
n

)n

= e−1/2x2
.

Proof. By Taylor’s theorem,

cos(x) = 1 − 1
2
x2 + r(x)
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with r(x) = sin(ξ) for ξ ∈ (0, x). For any ε > 0 there is an n such that

r

(
x√
n

)
=
∣∣∣∣r
(

x√
n

)∣∣∣∣ � x4

6n2
<

ε

n
.

Hence,

(
1 − x2

2n

)n

�
(

cos
x√
n

)n

�
(

1 − x2

2n
+ ε

n

)n

For n → ∞, we get

e− 1
2 x2 � lim

n→∞

(
cos

x√
n

)n

� e− 1
2 x2+ε

The assertion follows for ε → 0.

Throughout this section, let X1, . . . , XN, Y1, . . . , YN be independent random
variables with properties (1) and (2) from section 3. Then holds

Lemma 4. Indices B(X), B(Y) are uncorrelated.

Proof. Write

B(X) =
∑

v,w

XvXw

1{(v,w)∈D1}√
N − 1

,

whereby 1{(v,w)∈D1} is the indicator function for event {(v, w) ∈ D1}. Then,
by linearity and independence, E(B(X)) = 0 and E(B(X)B(Y)) = 0, hence
ρ(B(X), B(Y)) = 0.

Thus, both A(X), A(Y) and B(X), B(Y) are uncorrelated, The following two
theorems show what difference the factor 1/

√
N − 1 makes in terms of indepen-

dence.

Theorem 5. Indices B(X), B(Y) are asymptotically normal and independent for
E(N) → ∞ and Var(N) ∈ O(E(N)α), α < 1.

Proof. We introduce a notation first. For a random vector X and an event A,
let ϕ(X|A)(x) denote the conditional expectation, E(eix.X|A).

ϕ(B(X),B(Y))(x, y) =
∑

n>1

ϕ(B(X),B(Y)|N=n)(x, y)P (N = n)
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=
∑

n>1

E



exp
∑

(v,w)∈D1(T )

(
i

x√
n − 1

XvXw + i
y√

n − 1
YvYw

)

P(N = n).

By lemma 1 and corollary 2, we get

=
∑

n>1

E

((
exp

(
i

x√
n − 1

X1X2 + i
y√

n − 1
Y1Y2

))n−1
)

P(N = n)

=
∑

n>1

(
ϕX1X2

(
x√

n − 1

))n−1 (
ϕY 1Y 2

(
x√

n − 1

))n−1

P(N = n).

Since P(X1X2 = ±1) = 1/2,

ϕX1X2(x) = 1
2

e−ix + 1
2

eix = cos(x)

hence, the sum above is

=
∑

n>1

(
cos

(
x√

n − 1

))n−1 (
cos

(
x√

n − 1

))n−1

︸ ︷︷ ︸
:=fn(x)

P (N = n).

Next, we show that this sum converges to e−1/2(x2+y2). With the triangular
inequality follows

∣∣∣ϕ(B(X).B(Y))(x, y) − e− 1
2 (x2+y2)

∣∣∣

�
�E(N)/2�∑

n=2

P(N = n) +
∞∑

�E(N)/2�
|fn(x) − e− 1

2 (x2+y2)|P(N = n)

� �E(N)/2�P(|N − E(N)| � E(N)/2) + max
n�E(N)/2

|fn(x) − e− 1
2 (x2+y2)|

� 2Var(N)

E(N)
+ max

n�E(N)/2
|fn(x) − e− 1

2 (x2+y2)|

by Chebyshev’s inequality. By lemma 3, fn(x) → e−1/2(x2+y2), thus
∣∣∣ϕ(B(X),B(Y))(x, y) − e−1/2(x2+y2)

∣∣∣ → 0

for E(N) → ∞ and V ar(N) ∈ O(E(N)α), α < 1. Since e− 1
2 (x2+y2) is the charac-

teristic function of the bivariate normal distribution, we have shown that B(X)
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(and B(Y)) are asymptotically normal (the marginal distributions of a bivariate
normal distribution are normal). Further, random variables that are uncorrelated
and whose joint distribution is the bivariate normal distribution are independent.
Hence, the assertion follows by lemma 4.

Theorem 6. The assertions of theorem 5 do not hold for the untransformed indi-
ces A(X),A(Y).

Proof. From the proof of theorem 5 follows for A(X),A(Y)

ϕA(X)(x) =
∑

n>1

(cos(x))n−1P(N = n)

and

ϕ(A(X),A(Y))(x, y) =
∑

n>1

(cos(x) cos(y))n−1P(N = n)

As distribution for N = Nk we choose

P(Nk = n) =
(

1
2

)n−1−k

, n � k + 2.

Thus, E(N) → ∞ is equivalent to k → ∞ and V ar(Nk) is constant. We get

ϕA(X)(x) =
∞∑

n=k+2

(cos(x))n−1
(

1
2

)n−1−k

= 2k

∞∑

n=k+1

(
1
2

cos(x)

)n

= 2k

( 1
2 cos(x)

)k+1

1 − 1
2 cos(x)

= (cos(x))k+1

2 − cos(x)

by the formula for the sum of a geometric progression. Thus, B(X) is not asymp-
totically normal. Accordingly,

ϕ(A(X),A(Y))(x, y) = (cos(x) cos(y))k+1

2 − cos(x) cos(y)
.

Since

ϕA(X)ϕA(Y)

ϕ(A(X),A(Y))

= 2 − cos(x) cos(y)

(2 − cos(x))(2 − cos(y))

≡ 1

indices A(X), A(Y) are not independent.
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5. Discussion

Theorems 5 and 6 show that the factor 1/
√

N − 1 further reduces depen-
dence among the already uncorrelated indices B(X), B(Y) in our random tree
model, This makes this transform interesting for further research. However, our
model has two shortcomings:

1. graphs must have no cycles, whereas chemical graphs may contain cycles;

2. the random variables Xv, Yv assume only two distinct values.

An essential prerequisite for the proof of theorem 5 is that
∑

XvXw is a
sum of independent random variables, as shown in lemma 1, This does not hold
for arbitrary graphs: generalizing the example in section 3, it is easy to show that
in any cycle CnX1Xn is a function of

∑n−1
v=1 XvXv+1. Also, if X1, . . . , Xn are not

uniformly distributed on {−1, 1}, then (XvXw){(v,w)∈D1} may not be independent
even on trees: let X1, . . . , Xn be i.i. d. with P(X1 = 0) = p > 0. If (1, 2), (1, 3) ∈
D1 then X1X2, X1X3 are not independent. However, these results suggest that the
factor 1/

√|D1| eliminates an otherwise present size-dependence in general graphs
(including cyclic graphs) for arbitrary random variables Xv that are symmetri-
cally distributed with mean 0. The size of a graph can be coded as a separate
descriptor.
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