Journal of Mathematical Chemistry Vol. 38, No. 3, October 2005 (© 2005) DOI: 10.1007/s10910-005-6474-5

Asymptotically independent topological indices on random trees

Boris Hollas

Theoretische Informatik, Universität Ulm, D-89081 Ulm, Germany E-mail: hollas@informatik.uni-ulm.de

Received 24 November 2003; revised 19 May 2005

Topological indices are graph invariants used in computational chemistry to encode molecules. A frequent problem when performing structure-activity studies is that topological indices are inter-correlated. We consider a simple topological index and show asymptotic independence for a random tree model. This continues previous work on the correlation among topological indices. These findings suggest that a size-dependence in a certain class of distance-based topological indices can be eliminated.

KEY WORDS: Topological indices, asymptotic independence, random graphs **AMS subject classification:** 05C80, 60E10, 92E10

1. Introduction

An important class of molecular descriptors used by computational chemists are topological indices. *Topological indices* are graph invariants that are derived from the molecular graph, usually the hydrogen-depleted molecular graph [1–4]. Such a graph represents atoms and bonds in a molecule, regardless of distances between atoms, bond and torsion angles, and other parameters representing the threedimensional molecular geometry. Topological indices are either a function of the molecular graph only (*topostructural indices*) or also encode information on chemical properties of atoms (*topochemical indices*) [5]. For example, the most frequently used molecular descriptor, the *Randić index* [6]

$$\sum_{\text{adjacent } v, w} \deg(v) \deg(w)$$

is a topostructural index while Moreau-Broto-autocorrelation [7]

$$\sum_{\text{adjacent } v,w} p_v p_w,$$

379

0259-9791/05/1000-0379/0 © 2005 Springer Science+Business Media, Inc.

whereby p_v , p_w are quantitative chemical properties of atoms v, w, is a topochemical index. The latter index is also used for pairs of atoms having distances (number of bonds between) d > 1.

Topological indices are used to characterize similarity of molecules and to predict physical, chemical or biological activities or properties [8]. Since topological indices can readily be computed using very little computation time they are especially suited to screen large virtual libraries, a common task in computer aided drug design.

The methods to relate the structure of a molecule to a specific activity or property are known as quantitative structure-activity relationship (QSAR) or quantitative structure-property relationship (QSPR) [9]. A frequent problem is that molecular descriptors are inter-correlated which makes QSAR/QSFR studies difficult or even impossible and raises doubt concerning the meaning of a large number of descriptors [10], In this paper we consider a simple topological index and show asymptotic independence for non-cyclic structures.

2. Preliminaries

Let $D_d = D_d(G) = \{(v, w) | v < w \land d(v, w) = d\}$ be the set of ordered pairs of vertices that have distance d > 0 in graph G and for all $v \in V$ let X_v be a variable associated with v. Many topological indices have the form

$$A_d(\mathbf{X}) = \sum_{(v,x)\in D_d} X_v X_w,$$

whereby $\mathbf{X} = (X_1, \dots, X_n)$ is the vector of vertex-properties.

In [11-13], we used random graph models to investigate correlations among these indices. *A random graph model* is, in the most general case, a set of graphs together with a probability distribution defined on it.

For any random graph model, we proved the following [13]: let, for all vertices v, w, Y_v, Y_w be independent random variables that are independent of the graphical structure, and let E(X) and E(Y) be the common expectations of X_v and Y_v , respectively. For all distances d > 0 then holds

1. $A_d(\mathbf{X}), A_d(\mathbf{Y})$ are uncorrelated iff E(X) = 0 or E(Y) = 0;

2. $A_d(\mathbf{X}), A_d(\mathbf{Y})$ are linearly dependent for $E(X), E(Y) \to \pm \infty$.

However, uncorrelated random variables may still be dependent, even functionally dependent. Thus, the above result does not clarify if the mutual dependence, as expressed e.g., by the mutual information [14], is reduced for E(X) = 0and to what extent. In this paper, we use characteristic functions to show asymptotic independence. The *characteristic function* $\varphi \mathbf{X} : \mathbb{R}^k \to \mathbb{C}$ of a *k*-dimensional random vector \mathbf{X} is defined as

$$\varphi_{\mathbf{X}}(\mathbf{X}) = E(e^{i\mathbf{X}\cdot\mathbf{X}})$$

whereby \cdot denotes the scalar product. Note that $\varphi_{\mathbf{X}}$ is always finite since $|\varphi_{\mathbf{X}}(x)| \leq 1$. Characteristic functions have the following important properties [15,16]:

(1) φ_X is characteristic for X, i.e. $\varphi_X = \varphi_Y$ iff $X \sim Y$;

(2) $\varphi_{X_n} \to \varphi_X \iff X_n \xrightarrow{\mathscr{L}} X;$

- (3) for independent random variables X, Y holds $\varphi_{X+Y} = \varphi_X + \varphi_Y$ (the converse is not true however);
- (4) random variables X, Y are independent iff for all x, $y\varphi(X, Y)^{(x,y)} = \varphi_X(x)\varphi_Y(y)$.

3. The random tree model

Let (\mathcal{T}, P) be a probability space of trees whose number of vertices is distributed according to a random variable N, that is, for every tree $T \in \mathcal{T}$ holds P(T has n vertices) = P(N = n). We require that N > 1.

Furthermore, let X_1, \ldots, X_N be random variables such that

- (1) X_1, \ldots, X_N are independent and uniformly distributed on $\{-1, 1\}$,
- (2) X_1, \ldots, X_N are independent of D_1 .

Since we are going to use property (3) of characteristic functions, we need that

$$\sum_{(v,w)\in D_1(T)} X_v X_w$$

is a sum of independent random variables for every fixed $T \in \mathcal{T}$. While for any graph $G = (V, D_1)(X_v X_w)_{(v,w)\in D_1}$ are pairwise independent, these random variables are not independent for cyclic graphs: consider $G = K_3$ and let be $X_1 X_2 = X_2 X_3 = 1$. Then $X_1 = X_2 = X_3$, hence $X_1 X_3 = 1$. However, independence holds for trees:

Lemma 1. For every tree T, $(X_v X_w)_{(v,w) \in D_1(T)}$ are independent.

Proof. Since T is a tree, let be w.l.o.g. 1 a leaf and $(1, 2) \in D_1$. For all $(v, w)D_1$, let be $x_{v,w} \in \{-1, 1\}$. Then

$$P(X_1X_2 = 1 \land \forall (v, w) \in D_1X_vX_w = x_{v,w}) = P(X_1 = X_2 = 1 \land \forall (v, w) \in D_1X_vX_w = x_{v,w}) + P(X_1 = X_2 = -1 \land \forall (v, w) \in D_1X_vX_w = x_{v,w})$$

since $P(X_1 = \pm 1) = 1/2 = P(X_1X_2 = 1)$, we get

$$= P(X_1X_2 = 1)(P(X_2) = 1 \land \forall (v, w) \in D_1X_vX_w = x_{v,w}) + P(X_2 = -1 \land \forall (v, w) \in D_1X_vX_w = x_{v,w})) = P(X_1X_2 = 1)P(\forall (v, w) \in D_1X_vX_w = x_{v,w}) = \dots = \prod_{(v,w)\in D_1} P(X_vX_w = x_{v,w}).$$

For $P(X_1X_2 = -1)$, the result follows accordingly. Thus, for all $M \subset D_1$ follows

$$P\left(\bigcup_{(v,w)\in M} \{X_v X_w = x_{v,w}\}\right) = \prod_{(v,w)\in M} P(X_v X_w = x_{v,w})$$

since $M = D_1(F)$ for a forest F.

As an unexpected consequence, we get:

Corollary 2. Let T_1, T_2 be trees on the same number of vertices. Then

$$\sum_{(v,w)\in D_1(T_1)} X_v X_w \text{ and } \sum_{(v,w)\in D_1(T_1)} X_v X_u$$

have the same distribution.

Proof. The distribution of the sum depends on the number of summands only.

4. Asymptotic independence

Lemma 3 is crucial to show asymptotic normality and independence in the main theorem. Note that $e^{-1/2x^2}$ is the characteristic function of the normal distribution.

Lemma 3. For all $x \in \mathbb{R}$, $\lim_{n \to \infty} \left(\cos \frac{x}{\sqrt{n}} \right)^n = e^{-1/2x^2}$.

Proof. By Taylor's theorem,

$$\cos(x) = 1 - \frac{1}{2}x^2 + r(x)$$

with $r(x) = \sin(\xi)$ for $\xi \in (0, x)$. For any $\varepsilon > 0$ there is an *n* such that

$$r\left(\frac{x}{\sqrt{n}}\right) = \left|r\left(\frac{x}{\sqrt{n}}\right)\right| \leqslant \frac{x^4}{6n^2} < \frac{\varepsilon}{n}$$

Hence,

$$\left(1 - \frac{x^2}{2n}\right)^n \leqslant \left(\cos\frac{x}{\sqrt{n}}\right)^n \leqslant \left(1 - \frac{x^2}{2n} + \frac{\varepsilon}{n}\right)^n$$

For $n \to \infty$, we get

$$e^{-\frac{1}{2}x^2} \leq \lim_{n \to \infty} \left(\cos \frac{x}{\sqrt{n}} \right)^n \leq e^{-\frac{1}{2}x^2 + \varepsilon}$$

The assertion follows for $\varepsilon \to 0$.

Throughout this section, let $X_1, \ldots, X_N, Y_1, \ldots, Y_N$ be independent random variables with properties (1) and (2) from section 3. Then holds

Lemma 4. Indices $B(\mathbf{X})$, $B(\mathbf{Y})$ are uncorrelated.

Proof. Write

$$B(\mathbf{X}) = \sum_{v,w} X_v X_w \frac{I_{\{(v,w) \in D_1\}}}{\sqrt{N-1}},$$

whereby $1_{\{(v,w)\in D_1\}}$ is the indicator function for event $\{(v,w)\in D_1\}$. Then, by linearity and independence, $E(B(\mathbf{X})) = 0$ and $E(B(\mathbf{X})B(\mathbf{Y})) = 0$, hence $\rho(B(\mathbf{X}), B(\mathbf{Y})) = 0$.

Thus, both $A(\mathbf{X})$, $A(\mathbf{Y})$ and $B(\mathbf{X})$, $B(\mathbf{Y})$ are uncorrelated. The following two theorems show what difference the factor $1/\sqrt{N-1}$ makes in terms of independence.

Theorem 5. Indices $B(\mathbf{X})$, $B(\mathbf{Y})$ are asymptotically normal and independent for $E(N) \rightarrow \infty$ and $Var(N) \in O(E(N)^{\alpha}), \alpha < 1$.

Proof. We introduce a notation first. For a random vector X and an event A, let $\varphi_{(X|A)}(x)$ denote the conditional expectation, $E(e^{ix.X}|A)$.

$$\varphi_{(B(\mathbf{X}),B(\mathbf{Y}))}(x, y) = \sum_{n>1} \varphi_{(B(\mathbf{X}),B(\mathbf{Y})|N=n)}(x, y) P(N=n)$$

$$= \sum_{n>1} E\left(\exp\sum_{(v,w)\in D_1(T)} \left(i\frac{x}{\sqrt{n-1}}X_vX_w + i\frac{y}{\sqrt{n-1}}Y_vY_w\right)\right) P(N=n).$$

By lemma 1 and corollary 2, we get

$$= \sum_{n>1} E\left(\left(\exp\left(i\frac{x}{\sqrt{n-1}}X_{1}X_{2} + i\frac{y}{\sqrt{n-1}}Y_{1}Y_{2}\right)\right)^{n-1}\right)P(N=n)$$
$$= \sum_{n>1} \left(\varphi_{X_{1}X_{2}}\left(\frac{x}{\sqrt{n-1}}\right)\right)^{n-1} \left(\varphi_{Y_{1}Y_{2}}\left(\frac{x}{\sqrt{n-1}}\right)\right)^{n-1}P(N=n).$$

Since $P(X_1X_2 = \pm 1) = 1/2$,

$$\varphi_{X_1X_2}(x) = \frac{1}{2}e^{-ix} + \frac{1}{2}e^{ix} = \cos(x)$$

hence, the sum above is

$$=\sum_{n>1}\underbrace{\left(\cos\left(\frac{x}{\sqrt{n-1}}\right)\right)^{n-1}\left(\cos\left(\frac{x}{\sqrt{n-1}}\right)\right)^{n-1}}_{:=f_n(x)}P(N=n).$$

Next, we show that this sum converges to $e^{-1/2(x^2+y^2)}$. With the triangular inequality follows

$$\left|\varphi_{(B(\mathbf{X}).B(\mathbf{Y}))}(x, y) - e^{-\frac{1}{2}(x^2+y^2)}\right|$$

$$\leq \sum_{n=2}^{\lfloor E(N)/2 \rfloor} P(N=n) + \sum_{\lfloor E(N)/2 \rfloor}^{\infty} |f_n(x) - e^{-\frac{1}{2}(x^2 + y^2)}| P(N=n)$$

$$\leq \lfloor E(N)/2 \rfloor P(|N - E(N)| \geq E(N)/2) + \max_{n \geq E(N)/2} |f_n(x) - e^{-\frac{1}{2}(x^2 + y^2)}|$$

$$\leq \frac{2\text{Var}(N)}{E(N)} + \max_{n \geq E(N)/2} |f_n(x) - e^{-\frac{1}{2}(x^2 + y^2)}|$$

by Chebyshev's inequality. By lemma 3, $f_n(x) \rightarrow e^{-1/2(x^2+y^2)}$, thus

$$\left|\varphi_{(B(\mathbf{X}), B(\mathbf{Y}))}(x, y) - e^{-1/2(x^2 + y^2)}\right| \to 0$$

for $E(N) \to \infty$ and $Var(N) \in O(E(N)^{\alpha}), \alpha < 1$. Since $e^{-\frac{1}{2}(x^2+y^2)}$ is the characteristic function of the bivariate normal distribution, we have shown that $B(\mathbf{X})$

(and $B(\mathbf{Y})$) are asymptotically normal (the marginal distributions of a bivariate normal distribution are normal). Further, random variables that are uncorrelated and whose joint distribution is the bivariate normal distribution are independent. Hence, the assertion follows by lemma 4.

Theorem 6. The assertions of theorem 5 do not hold for the untransformed indices $A(\mathbf{X}), A(\mathbf{Y})$.

Proof. From the proof of theorem 5 follows for $A(\mathbf{X}), A(\mathbf{Y})$

$$\varphi_{A(\mathbf{X})}(x) = \sum_{n>1} (\cos(x))^{n-1} P(N=n)$$

and

$$\varphi_{(A(\mathbf{X}),A(\mathbf{Y}))}(x, y) = \sum_{n>1} (\cos(x)\cos(y))^{n-1} P(N=n)$$

As distribution for $N = N_k$ we choose

$$P(N_k = n) = \left(\frac{1}{2}\right)^{n-1-k}, \quad n \ge k+2.$$

Thus, $E(N) \to \infty$ is equivalent to $k \to \infty$ and $Var(N_k)$ is constant. We get

$$\varphi_{A(\mathbf{X})}(x) = \sum_{n=k+2}^{\infty} (\cos(x))^{n-1} \left(\frac{1}{2}\right)^{n-1-k}$$
$$= 2^k \sum_{n=k+1}^{\infty} \left(\frac{1}{2}\cos(x)\right)^n$$
$$= 2^k \frac{\left(\frac{1}{2}\cos(x)\right)^{k+1}}{1 - \frac{1}{2}\cos(x)}$$
$$= \frac{(\cos(x))^{k+1}}{2 - \cos(x)}$$

by the formula for the sum of a geometric progression. Thus, $B(\mathbf{X})$ is not asymptotically normal. Accordingly,

$$\varphi_{(A(\mathbf{X}),A(\mathbf{Y}))}(x,y) = \frac{(\cos(x)\cos(y))^{k+1}}{2-\cos(x)\cos(y)}.$$

Since

$$\frac{\varphi_{A(\mathbf{X})}\varphi_{A(\mathbf{Y})}}{\varphi_{(A(\mathbf{X}),A(\mathbf{Y}))}} = \frac{2 - \cos(x)\cos(y)}{(2 - \cos(x))(2 - \cos(y))} \neq 1$$

indices $A(\mathbf{X})$, $A(\mathbf{Y})$ are not independent.

5. Discussion

Theorems 5 and 6 show that the factor $1/\sqrt{N-1}$ further reduces dependence among the already uncorrelated indices $B(\mathbf{X})$, $B(\mathbf{Y})$ in our random tree model, This makes this transform interesting for further research. However, our model has two shortcomings:

- 1. graphs must have no cycles, whereas chemical graphs may contain cycles;
- 2. the random variables X_v, Y_v assume only two distinct values.

An essential prerequisite for the proof of theorem 5 is that $\sum X_v X_w$ is a sum of independent random variables, as shown in lemma 1, This does not hold for arbitrary graphs: generalizing the example in section 3, it is easy to show that in any cycle $C_n X_1 X_n$ is a function of $\sum_{v=1}^{n-1} X_v X_{v+1}$. Also, if X_1, \ldots, X_n are not uniformly distributed on $\{-1, 1\}$, then $(X_v X_w)_{\{(v,w) \in D_1\}}$ may not be independent even on trees: let X_1, \ldots, X_n be i.i. d. with $P(X_1 = 0) = p > 0$. If $(1, 2), (1, 3) \in$ D_1 then $X_1 X_2, X_1 X_3$ are not independent. However, these results suggest that the factor $1/\sqrt{|D_1|}$ eliminates an otherwise present *size-dependence* in general graphs (including cyclic graphs) for arbitrary random variables X_v that are symmetrically distributed with mean 0. The size of a graph can be coded as a separate descriptor.

References

- [1] N. Trinajstić, Chemical Graph Theory (CRC Press, Boca, Raton, 1992).
- [2] D. Bonchev and D. Rouvray, editors. *Chemical Graph Theory* (Abacus Press/Gordon & Breach, Amsterdam. 1991).
- [3] D. Rouvray, ed. Computational Chemical Graph Theory (Nova Press, 1990).
- [4] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley, New York, 2000).
- [5] S. Basak, B. Gute and G. Grunwald, Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure. J. Chem. Inf. Comput. Sci. 39 (1999) 255.
- [6] M. Randlé, On characterization of molecular branching. J. Am. Chem. Soc., 97 (1975) 6609.
- [7] G. Moreau and P. Broto. Autocoxrelation of a topological structure: A new molecular descriptor. Nouv. J. Chim. 4 (1980) 359.
- [8] J. Devillers and A. Balaban (ed.), *Topological Indices and Related Descriptors in QSAR and QSPR* (Gordon & Breach, Amsterdam, 1999).
- [9] M. Karelson, Molecular Descriptors in QSAR/QSPR (Wiley, New York, 2000).
- [10] I. Motoc, A. Balaban, O. Mekenyan and D. Bonchev, Topological indices: Inter-relations and composition, MATCH – Commun. Math. Comput. Chem. 13 (1982) 369.
- B. Hollas, Correlation properties of the autocorrelation descriptor for molecules. MATCH Commun. Math. Comput. Chem. 45 (2002) 27.
- [12] B. Hollas. An analysis of the autocorrelation descriptor for molecules. J. Math. Chem. 33(2) (2003) 91.
- [13] B. Hollas. Correlations in distance-based descriptors, MATCH Commun. Math. Comput. Chem. 47 (2003) 79.
- [14] R. Roman, Coding and Information Theory (Springer, Berlin, 1992).

- [15] H. Bauer, Probability Theory (Gruyter, 1996).
- [16] W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1970).